Research Videos

We provide here visual summaries of some of our projects.  For additional information, see our publications page. 

Electroosmotic flow dipole: experimental observation and flow field patterning

We experimentally demonstrate the phenomenon of electroosmotic dipole flow that occurs around a localized surface charge region under the application of an external electric field in a Hele-Shaw cell. We use localized deposition of polyelectrolytes to create well-controlled surface charge variations, and show that for a disk-shaped spot, the internal pressure distribution that arises, results in uniform flow within the spot and dipole flow around it. We further demonstrate the superposition of surface charge spots to create complex flow patterns, without the use of physical walls.

Publications

Dynamic microscale flow patterning using electrical modulation of zeta potential

The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized fieldeffect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time.

Dynamic control of capillary flow in porous media by electroosmotic pumping

Microfluidic paper-based analytical devices (μPADs) rely on capillary flow to achieve filling, mixing and delivery of liquids. We investigate the use of electroosmotic (EO) pumping as a mechanism for dynamic control of capillary flow in paper-based devices. The applied voltage can accelerate or decelerate the baseline capillary-driven velocity, as well as be used to create a tunable valve that reversibly switches the flow on and off in an electrically controlled manner. The method relies on simple fabrication and allows repeated actuation, providing a high degree of flexibility for automation of liquid delivery. We adapt the Lucas–Washburn model to account for EO pumping and provide an experimentally validated analytical model for the distance penetrated by the liquid as a function of time and the applied voltage. We show that the EO-pump can reduce filling time by 6.5-fold for channels spanning several cm in length, relative to capillary filling alone. We demonstrate the utilization of the EO-pump for a tunable and dynamic flow control that accelerates, decelerate and stop the flow on demand. Finally, we present the use of EO-pump for fluid flow sequencing on a paper-based device.

The study of thermocapillary driven flows is typically restricted to ‘open’ systems, i.e. ones where a liquid film is bounded on one side solely by another fluid. However, a large number of natural and engineered fluidic systems are comprised of solid boundaries with only small open regions exposed to the surrounding. In this work we study the flow generated by the thermocapillary effect in a liquid film overlaid by a discontinuous solid surface. If the openings in the solid are subjected to a temperature gradient, the resulting thermocapillary flow will lead to a non-uniform pressure distribution in the film, driving flow in the rest of the system. For an infinite solid surface containing circular openings, we show that the resulting pressure distribution yields dipole flows which can be superposed to create complex flow patterns, and demonstrate how a confined dipole can act as a thermocapillary motor for driving fluids in closed microfluidic circuits. For a mobile, finite-size surface, we show that an inner temperature gradient, which can be activated by simple illumination, results in the propulsion of the surface, creating a thermocapillary surface swimmer.

Dipolar thermocapillary motor and swimmer
Real-Time Monitoring of Fluorescence in Situ Hybridization Kinetics

We present a novel method for real-time monitoring and kinetic analysis of fluorescence in situ hybridization (FISH). We implement the method using a vertical microfluidic probe containing a microstructure designed for rapid switching between a probe solution and a non-fluorescent imaging buffer. The FISH signal is monitored in real time during the imaging buffer wash, during which signal associated with unbound probes is removed. We provide a theoretical description of the method as well as a demonstration of its applicability using a model system of centromeric probes (Cen17). We demonstrate the applicability of the method for the characterization of FISH kinetics under conditions of varying probe concentration, destabilizing agent (formamide) content, volume exclusion agent (dextran sulfate) content, and ionic strength. We show that our method can be used to investigate the effect of each of these variables and provide insight into processes affecting in situ hybridization, facilitating the design of new assays.  

Spatially resolved genetic analysis of tissue sections enabled by microscale flow confinement retrieval and isotachophoretic purification

We have developed a method for spatially resolved genetic analysis of formalin-fixed paraffin-embedded (FFPE) cell block and tissue sections. This method involves local sampling using hydrodynamic flow confinement of a lysis buffer, followed by electrokinetic purification of nucleic acids from the sampled lysate. We characterized the method by locally sampling an array of points with a circa 200 mm diameter footprint, enabling the detection of single KRAS and BRAF point mutations in small populations of RKO and MCF-7 FFPE cell blocks. To illustrate the utility of this approach for genetic analysis, we demonstrate spatially resolved genotyping of FFPE sections of human breast invasive ductal carcinoma.